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Doppler velocimetry is widely used in the measurement of nanometre resonance vibrations of
micro-electromechanical systems (MEMS). It has excellent sensitivity and precision, but typical
engineering applications do not require traceability of these velocity measurements to the SI
system. While Doppler velocimetry is, in principle, easy to make traceable to the velocity of
light, in practice a frequency-to-voltage conversion in common commercial instruments breaks
this traceability unless calibrated. Typically, though, calibration is performed at a much lower
frequency than those typical of MEMS devices, without the guarantee that the calibration is
applicable in this higher frequency regime.

We present a method of traceable measurement of velocity in terms of the velocity of light,
valid for the range of frequency and nanometre amplitudes typical of MEMS devices driven
to resonance vibration. This is achieved by analysis of sideband amplitudes in the interference
spectrum before demodulation of the Doppler signal. These sideband amplitudes can con-
veniently be measured using a benchtop spectrum analyser, a piece of widely available electrical
test equipment. We illustrate the method with measurements on individual AFM cantilevers.
In combination with cantilever calibration methods based on MEMS devices this method
enables traceable calibration of those cantilevers employed for the measurement of pico- and
nanonewton forces between individual biomolecules.

Keywords: AFM; Calibration; MEMS; Doppler; Vibration; Traceability

1. Introduction

An important class of micro-electromechanical systems (MEMs) device is the resonant
sensor that measures a physical quantity through changes in the device resonance.
These changes are in terms of resonance frequency, phase, quality factor or amplitude.
An example of the latter is non-contact mode atomic force microscopy (AFM) imaging,

*Corresponding author. Email: peter.cumpson@npl.co.uk

Journal of Experimental Nanoscience

ISSN 1745-8080 print/ISSN 1745-8099 online � 2006 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/17458080500411999

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
2
1
 
1
5
 
J
a
n
u
a
r
y
 
2
0
1
1



where the microfabricated AFM cantilever is the MEMS device in question,
and its amplitude of the cantilever resonance can be related to the dissipation of

energy [1].
One important aspect regarding accuracy in the measurement of a physical quantity

is traceability. Traceability to a metric system implies that the measurements can be

expressed in terms of the physical units as they are defined in the metric system.

Traceability is usually achieved by calibration of the instruments. However, it is
immediately achieved when the measurement method is a primary method. This means

when the measurements provided can be directly expressed in terms of physical

constants which have fixed values in the units of the metric system. Resonance fre-

quency measurements can be easily performed traceably to the SI system. However,

traceable measurements of resonance amplitude are much more difficult. In a typical

AFM, an optical lever is used to measure cantilever deflection, and requires a number
of calibration steps before those deflections can be related to displacement of the tip or

angular deflection of the cantilever. Sensitivity is high, but traceability is absent unless

careful calibrations are made.
One type of device in which measurement of vibration amplitude is critical is the

electrical nanobalance [2], a device for AFM spring-constant calibration that we have

described previously. The calibration of the electrical nanobalance involves the
measurement of a vibration amplitude typically in the range 10–15 nanometres, with

an accuracy of around 1%. This is a challenge for conventional light interferometry.

Doppler interferometry [3], however, allows the measurement of velocity amplitude

with this precision [4, 5]. Doppler interferometry was employed initially in flow

measurements [6, 7] and it has found a growing number of applications in research and
industry. Examples are measurements of blood perfusion [8] in biomedical research and

vibration measurements in the automotive industry [9, 10]. There are many possible

designs for Doppler interferometers, depending on its application. Doppler inter-

ferometers can be built in the laboratory using bulk optical elements [11] but

commercial equipment is usually based on optical fibres. In principle, since Doppler

interferometry allows the velocity to be related directly to the speed of light, we have a
primary method for velocity measurement of MEMs devices.

Doppler vibrometry is the application of Doppler velocimetry to the measurement of

vibration phenomena. Not surprisingly therefore, Doppler vibrometry has become a

widely used technique in the dynamic characterization of MEMs devices [2, 12–15],

such as gyros, oscillators and accelerometers. Doppler vibrometry, as application of

Doppler velocimetry, is in principle a primary method for the measurement of vibration
velocity amplitudes. In practice, though, Doppler vibrometers usually have an analogue

demodulation stage, converting the Doppler signal into an analogue voltage, and this

frequency-to-voltage conversion needs calibration. Usually this is done by adjusting at

a variable resistor, while applying the interferometer to the surface of a standard

piezoelectric vibrator, almost always at 156Hz. This is clearly well below the typical
frequencies encountered in MEMs measurements, usually in the range of kHz.

In this paper we consider in detail the process of traceable measurement of velocity

using Doppler vibrometry, for the range of frequency and amplitude typically encoun-

tered in MEMs devices. We show that with relatively simple measurements using

a spectrum analyser, one can measure accurate and traceable velocities in the
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millimetre-per-second range. For those quantities amenable to measurement using
MEMs resonators this will allow a traceable measurement for the first time.

We begin by developing the theory for frequency modulation in the Doppler
interferometer detector, showing how the signal is formed and the features in its
frequency spectrum that can be related to the velocity of the MEMs structure. We then
validate the method experimentally with measurements on a commercially available
AFM cantilever, of a type that will be familiar to most practitioners of AFM.

An important practical consequence in the application of this method is that, in
combination with cantilever calibration methods based on MEMS devices [2, 12, 13],
this method enables traceable calibration of those cantilevers employed for the
measurement of pico- and nanonewton forces between individual biomolecules [16, 17].

2. Theory

Figure 1 shows a schematic of the Doppler vibrometer used in our study. It is based on
the Mach–Zehnder interferometer. The sample is placed on a vibrating stage where it is
driven to vibration at its resonance frequency !m. The polarized light emitted by the
laser source, a 632 nm He–Ne laser, is split into two different beams by a polarizing
splitter BS1. One beam, the reference, is led by a prism through a Bragg cell that shifts
its frequency by a constant offset !Bragg¼ 40MHz. The second, the object beam, passes
through the polarizing beam splitter BS2, then after being led into an optical fibre by an
input coupler, it passes through a �/4 plate and it is focused on the sample surface from
which it is back-scattered. The reflected light follows the same way back to the splitter

Object

Fiber Head

Fiber
Coupler 

Prism

ω

ω

Object beam

ω+ωBragg

Bragg cell

Reference beam

Object beam

ω + ∆

BS1 BS2 

BS3 

Detector

Object beam ω+∆

Reference beam ω+ωBragg

ωm

λ/4

ω

Figure 1. Schematic of the Doppler vibrometer used in the experiment. A source of polarized light is split
into two beams. The Doppler signal containing information about the object vibration is recorded by the
object beam as a modulation in frequency. The signal is extracted by demodulation from the interference of
object and reference beam through demodulation.
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BS2 where it is deflected to the polarizing splitter BS3. At the output from BS3 both
beams have their electric fields summed. This results in an interference beam, the
intensity of which is measured by a photodiode.

After reflection on the sample surface the object beam will be shifted in frequency by
the Doppler effect due to the device vibration, producing a modulation in frequency
(FM) on the reflected object beam [3]. The point of the device under the object beam
vibrates with a time dependence given by

y ¼ A sinð!mtÞ ð1Þ

The velocity of the point under study is then

_y ¼ A!m cosð!mtÞ ð2Þ

where _yMAX ¼ A!m is the velocity amplitude.
The associated Doppler frequency shift � or Doppler signal is given by [3, 8]:

�

!
¼ 2

_y

c
ð3Þ

where c is the velocity of light and ! the angular frequency of the laser.
From equation (2) it follows that the frequency shift has a harmonic time

dependence:

� ¼ �0 cosð!mtÞ ð4Þ

with

�0 ¼ 2
! _yMAX

c

The intensity of the interference beam is proportional to the square modulus of the
resulting electric field [18], considering that the components of the electric field are in
the same direction of polarization:

IðtÞ / jE tð Þj2 ¼ jEr tð Þ þ Et tð Þj
2 ¼ Er tð Þ

�� ��2þ Et tð Þ
�� ��2þ2Re E �

r tð ÞEt tð Þ
� �

ð5Þ

where Er and Et are the respective electric fields of the reference and object beams. The
first two terms are independent terms each corresponding to one of the beams involved.
The third one describes the interference between the two beams. Now the time
dependences of these electric fields are

Er tð Þ ¼ Er0 exp i ð!þ !BraggÞt
� �

Er tð Þ ¼ Et0 exp i !tþ

Zt
0

�ð�Þd� þ �

0
@

1
A ð6Þ
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where � is a phase shift that arises due to the difference of optical paths between the two

beams. Since optical paths are kept constant across the experiment, we can assume this

phase shift to be constant and enclose it in the complex amplitude Et0. The termR t
0 �ð�Þd� accounts for the dependence of the phase on the frequency variations �(t)

over time.
Given the harmonic time dependence of � (equation 4) and applying the theory of

frequency modulation, Et(t) can be rewritten as [19]

EtðtÞ ¼ Et0 exp ið!tÞ
X1

n¼�1

Jnð�Þ expðin!mtÞ ð7Þ

where Jnð�Þ is the nth-order Bessel function of the first kind [20], and � � �0=!m is a

parameter known as the modulation index.
Substituting equation (7) in equation (5) we obtain

E tð Þ
�� ��2 ¼ Er0

�� ��2þ Et0

�� ��2 X1
n,m¼�1

Jnð�ÞJmð�Þ exp iðn�mÞ!mtð Þ

 !

þ 2Re E �
r0Et0 expð�i!BraggtÞ

X1
n¼�1

Jnð�Þ expðin!mtÞ

( )
:

ð8Þ

Applying the Fourier transform in order to rewrite the expression in the frequency

domain [21, 22] gives

F EtðtÞ
�� ��2h i

ð!Þ ¼ Er0

�� ��2�ð0Þ
þ 2� Et0

�� ��2 X1
n,m¼�1

Jnð�Þ Jmð�Þ�ð!� ðn�mÞ!mÞ

þ 2� Er0

�� �� Et0

�� �� X1
n¼�1

Jnð�Þ exp i
�!

ð!Bragg � n!mÞ

� �

� �ð!þ ð!Bragg � n!mÞÞ þ �ð!� ð!Bragg � n!mÞÞ
� 	

: ð9Þ

The second term consists of a set of infinite sidebands found at frequency intervals of

!m and centred around a central signal at ! ¼ 0. The amplitudes of the second-term

sidebands are given by

A
2ndterm
k ¼ 2� Et0

�� ��2 Xþ1

n¼�1

Jnð�Þ Jnþkð�Þ ð10Þ

Finally, the interference term is

2� Er0

�� �� Et0

�� �� X1
n¼�1

Jnð�Þexp i
�!

ð!Bragg�n!mÞ

� �
�ð!þð!Bragg�n!mÞÞþ�ð!�ð!Bragg�n!mÞÞ
� 	
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where � is the phase shift between reference and object beam. It consists of two sets of

sidebands, one centred around –!Bragg, the other around þ!Bragg. For !Bragg�!m the

first term can be ignored, since the magnitude of Jnð�Þ decreases rapidly with n, and

the interference term is approximated by

F Einterf½ �ð!Þ ¼ 2� Er0

�� �� Et0

�� �� X1
n¼�1

Jnð�Þ exp i
�!

ð!Bragg � n!mÞ

� �

� �ð!� ð!Bragg � n!mÞÞ ð11Þ

Considering equation (11) and the property of Bessel functions [20]

J�kð�Þ ¼ ð�1Þk Jkð�Þ

then the amplitudes of the interference sidebands, disregarding the phase (–1)kexp[i�!/
(!bragg–n!m)], are given by:

A
interf
k ¼ 2� Er0

�� �� Et0

�� �� J kj jð�Þ ðk ¼ 0, � 1, � 2, � 3, . . .Þ ð12Þ

Figure 2 shows a schematic of the amplitudes involved in the interference spectrum

that we expect from equation (12).
Applying the recursive property of the Bessel functions [20]

2k

�
Jkð�Þ ¼ Jk�1ð�Þ þ Jkþ1ð�Þ

Figure 2. Sideband relative amplitudes in the interference spectrum. The relative amplitudes are
proportional to values of the Bessel functions of the first kind of the modulation index involved in the
Doppler signal.
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to the case k ¼ 1, we find the modulation index as a function of the first three Bessel
functions:

� ¼ 2
J1ð�Þ

J0ð�Þ þ J2ð�Þ
ð13Þ

From equations (4), (12) and (13):

_yMAX ¼
1

2

�!mc

!
¼

AInterf
1

AInterf
0 þAInterf

2

!mc

!
ð14Þ

This expression gives the velocity amplitude of the MEMS device vibration in terms of
the relative values of the first three sideband amplitudes. A special case is found for the
first value of � at which J0ð�Þ ¼ J1ð�Þ. This happens for approximately � ¼ 1:44 [20].

3. Experimental measurements

A detailed description of this instrumentation has been published [2], so only the
essential features will be summarized here. We used the Polytec OFV-3000 Laser
Doppler vibrometer with an OFV-500 sensor head (Polytec GmbH, Waldbronn,
Germany). In such Doppler vibrometers, the velocity and displacement measurement is
carried out using a modified Mach–Zehnder interferometer. At this time the
displacement output of the velocimeter was uncalibrated but expected to be linear,
whereas the velocity signal had been calibrated by the manufacturer. The light source is
a He–Ne laser that provides a linear polarized beam. A Bragg cell in the reference arm
of the interferometer generates an additional frequency offset to determine the sign of
the velocity. The resulting interference signal of the object beam and reference beam is
converted into an electrical signal using a photo-detector and subsequently decoded in
an electronic controller to provide analogue signals proportional to displacement and
velocity. These signals were then analysed and displayed using a Hewlett–Packard
3562A Dynamic Signal Analyser (Agilent Technologies, Inc. Palo Alto, CA, USA).

In addition to the heterodyne-mixed velocity signal, this instrument model offers a
direct output from the detection photodiode, labelled ‘RF’ on this instrument. A direct
output from the photodiode might not be available in all the vibrometer models from
Polytec. This is the signal whose frequency spectrum we analysed. Since the frequency
offset introduced by the Bragg cell is 40MHz, considerably larger than the bandwidth
of the HP 3562A instrument, the signal was digitized using a National Instruments PCI
5112 card at 8-bit resolution and 100MHz sampling (National Instruments, Austin,
TX, USA), and transformed to the frequency domain using the built-in fast Fourier
transform (FFT) [22] routine within the National Instruments Labview software
(National Instruments, Austin, TX, USA).

In our measurements (figure 3) we used a microlever AFM-cantilever chip (Veeco
Metrology, LLC, Santa Barbara, CA, USA). A white light interferometry micrograph
can be appreciated in figure 4. This chip contains four triangular and one rectangular
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AFM cantilevers. We measured the vibration of the cantilever labelled ‘E’ by the

manufacturer. This is the second longest triangular cantilever on the chip. The

manufacturer provides a nominal value for the resonance frequency of 38 kHz with

a minimum value of 26 kHz and a nominal value for the length of 140 micrometres.

Figure 3. Experimental measurement of AFM cantilever resonance. The cantilever is placed in a vibrating
stage. This is actuated by a piezo actuator. An harmonic ac voltage is applied to the piezo in order to bring
the cantilever to resonance. The vibrating stage is placed inside a vacuum chamber in order to achieve high
quality factors in the resonance curve. The optical setup enables simultaneous Doppler vibrometry and white
light interferometry.

Figure 4. White-light interferometry topography map of the Microlever AFM cantilever chip, showing five
cantilevers, including cantilever ‘E’, second from the bottom of this image. Note the upward curvature of the
cantilevers, due to residual stress after manufacture. Cantilever E has a nominal length of 140 microns.
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We determined the resonance frequency of the cantilever to be 26.6 kHz. The
measurements were performed driving the piezo-vibrator under the cantilever chip
at this frequency.

We recorded a set of interference spectra raising the drive amplitude levels at uniform
intervals of 50mV. The data points in each peak were fitted to a Lorentzian function
using the fitting algorithm built into the WaveMetrics Igor Pro 4.0.9 software package
(Wavemetrics, Inc., Portland, OR, USA). The actual shape of the peaks is produced by
the FFT algorithm [22] which applies a limited size window to the data sample previous
to the conversion. This is translated in the frequency domain as a convolution of
the sidebands with the Fourier transform of the applied window function, resulting
typically in a sinc( ) function [21, 22]. The Lorentzian function was found to be a good
approximation to the actual peak shape.

The heights of the three first peaks as measured on the fitted functions were used to
obtain the modulation index and velocity amplitude for each drive voltage applying
equations (13) and (14). From the obtained modulation indexes the corresponding
values of the Bessel functions were calculated. From the theory the relative values
obtained in this way should be in good agreement with the relative heights of the
measured sidebands. In figure 5 the Bessel function values and the actual spectral data
have been both normalized and superimposed for the drive voltage of 550mV showing
good agreement between the two sets of values. This is the maximum drive voltage
achieved in the experiment, and the one that shows the most complex set of sidebands.

In the harmonic vibration, the velocity amplitude is proportional to the amplitude of
the vibration, and this in turn is proportional to the amplitude of the harmonic drive
signal applied to the piezo-actuator. Then, the velocity amplitudes are expected to show
linear dependence with the drive voltages employed. The velocity amplitudes obtained
with the sideband method are represented versus the corresponding drive voltages in
figure 6 together with a linear fit. An estimation of the error committed in measuring
the velocities with the sideband method arise from calculating the residuals of the
measured velocities with respect to the linear fit. The root mean square of the residuals

Figure 5. Comparison of a normalized experimental data set with the predicted sideband relative amplitudes
(drive voltage¼ 550mV).
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is found to be around 1% of the average of the measured velocities. The error
estimation was performed for the velocities calculated from sidebands 0, þ1, þ2. The
corresponding values for sidebands 0, –1, –2 are also displayed in figure 6. Since these
velocity measurements are in terms of a fundamental constant with a fixed value within
the SI system, this means that the measurement is traceable to the SI, and therefore that
the accuracy of the measurement is equal to its precision.

4. Conclusions

We have described and tested a method to perform velocity measurements of MEMS
device resonance vibrations, which is traceable to the SI. This method is based on
heterodyne Doppler vibrometry and relies on direct measurements performed on the
interference signal in the frequency domain using an spectrum analyser as an alternative
to extraction of the Doppler signal by analogic demodulation. The analysis of the
interference spectrum is based on the theory of frequency modulation. It predicts for the
interference spectrum a set of sidebands located at regular frequency intervals equal to
the frequency of the vibration, and relative amplitudes that are given by the whole set of
Bessel functions of the first kind evaluated at the modulation index that characterizes
the Doppler signal. The theory also provides the velocity amplitude of vibration directly
in terms of the velocity of light through measurements of the relative amplitudes of
sidebands that are present in the interference spectrum. A test was performed on
a commercially available AFM cantilever. The cantilever driven at its resonance
frequency for different drive voltage amplitudes show interference spectra that are in
good agreement with the theoretic spectrum in all cases. From the observed spectra the
corresponding velocity amplitudes of vibration were calculated. These results show a
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Figure 6. Velocity amplitude versus drive voltage. Squares represent velocities calculated from
sidebands 0, þ1, þ2. The linear fit is calculated for the squares. Triangles represent the velocities from
sidebands 0, –1, –2.
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consistent linear dependency with the drive voltage amplitudes employed and provide
high accuracy in measurements of vibration velocity amplitude, traceable to the speed
of light. We expect this approach to be important in characterizing AFM cantilevers as
part of methods of spring-constant calibration for accurate pico- and nanonewton force
measurements on single molecules.
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